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The logarithm lnR of rotation matrix R is a skew symmetric tensor consisting of three independent elements of real numbers. In
addition to the Euler angles and the axis/angle pair, the elements of lnR called the log angles are also the set of three parameters of
R. In this paper, we will show that the concept of the log angles is also useful to discuss changes in crystal orientations.The changes
in R as a function of the position are given by the changes in the log angles. As an example, orientation changes caused by arrays of
dislocations in a plastically deformed Cu single crystal are discussed.

1. Introduction

Electron backscatter diffraction analysis with scanning elec-
tron microscopy (SEM/EBSD) is a powerful technique to
analyze orientations of crystalline materials. Using this tech-
nique, we can measure variations of crystal orientations in
materials with high accuracy.Then, there is a chance to assess
defect structures in grains such as dislocation structures that
can vary crystal orientations around the defects [1], but it
is necessary to express the variations in crystal orientations
reasonably.

We can describe certain crystal orientation using a
rotation matrix R, which is the 3 × 3 orthogonal matrix
having nine elements [2]. However since the number of
independent elements of R is three, sets of three parameters
instead of R are more convenient to understand the rotation.
To discuss variations R in crystalline materials obtained by
results of SEM/EBSDmeasurements, appropriate parameters
should be selected to show the relationship between changes
in crystal orientations and microstructures formed in the
materials.

The logarithm lnR of R has been considered to discuss
the rotation mathematically in the framework of the group
theory [3–5]. The logarithm lnR is a skew symmetric tensor
consisting of three independent elements of real numbers.

In addition to the Euler angles and the axis/angle pair [2],
the elements of lnR are also the set of three parameters of
R [6]. In this paper, we will show that elements of lnR called
the log angles [7, 8] are useful parameters to discuss changes
in crystal orientations. As an example, orientation changes
caused by arrays of dislocations in a plastically deformed Cu
single crystal are discussed.

2. Changes in Crystal Orientation

2.1. Logarithm of Rotation Matrix. When the axis/angle pair
of R is given by a unit vector n = (ℎ, 𝑘, 𝑙) and a rotation angleΦ, using the set of log angles (𝑤1, 𝑤2, 𝑤3) forR, lnR is written
as [4]

lnR = ( 0 −𝑤3 𝑤2𝑤3 0 −𝑤1−𝑤2 𝑤1 0 ) = ( 0 −𝑙Φ 𝑘Φ𝑙Φ 0 −ℎΦ−𝑘Φ ℎΦ 0 ) . (1)

On the other hand, the relationship between R and lnR is
written as [5]

R = lim
𝑝→∞

(E + lnR𝑝 )𝑝, (2)
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Figure 1: Graphical or mechanical representations of R given by (3). Spherical units corresponding to 𝛿R given by (4) are stacked 𝑁 times.
(a) and (b) are the models for before and after the operation of R, respectively. In (b) R determines the primed coordinate axes of a crystal on
the top of the model with respect to the reference unprimed frame.
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Figure 2: A model showing changes in crystal orientations for line
scan of SEM/EBSD measurements.

where E is the unit matrix. Hence when 𝑁 is a sufficiently
large positive integer, we have

R ≈ (𝛿R)𝑁 , (3)

where

𝛿R=E + lnR𝑁 = ( 1 −𝑤3𝑁 𝑤2𝑁𝑤3𝑁 1 −𝑤1𝑁−𝑤2𝑁 𝑤1𝑁 1 ). (4)

Equation (4) shows that the 𝑁(≫ 1) times successive
operations of 𝛿R are equivalent to R. Hence, we have Figures
1(a) and 1(b) as graphical or mechanical representations [7, 8]
of R given by (3) and (4). Spherical units corresponding to𝛿R with infinitesimal rotation angles are stacked 𝑁 times.
Since 𝛿R is the rotationmatrix with infinitesimal off-diagonal

components, this can be shown as a product of three basic
rotations in a spherical unit [7, 8].These figures show that the
log angles (𝑤1, 𝑤2, 𝑤3) are the sums of the divided rotation
angles around the coordinate axes of the reference frame and
interpreted as the components of the rotation angles of R
[7, 8]. This can be said for any R and is not limited to small
angles.

Depending on selection of rotation axes and their orders,
various sets of the Euler angles based on products of three
basic rotations are defined for certain R [7]. The reason
of the many sets is that the products of rotations are not
commutative [7]. Different from the various sets of the Euler
angles, a set of the log angles is uniquely determined for
certain R [7]. Using a concept similar to that of the Euler
angles, components of the rotation angles of R have been
proposed by considering simple products of rotations [9].
However, as well as the Euler angles, the components given
by considering the simple products of rotations may not
be uniquely determined for certain R. The concept of the
log angles can be applied to other characteristic values of
rotations such as average orientations treated in previous
studies [6, 10, 11] .

2.2. Log Angles for Small-Angle Rotation. As a model for line
scan of SEM/EBSDmeasurements, here we consider changes
in crystal orientations as shown by Figure 2. The crystal
orientations at the positions 𝑥1 and 𝑥2 with respect to that
at the origin O are given by R(𝑥1) and R(𝑥2), respectively.
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Figure 3: Graphical representations corresponding to the (a) right- and (b) left-hand sides of (5), where the difference ΔR in the crystal
orientations between those at 𝑥1 and 𝑥2 is expressed by using the reference frame at the origin.

ND ≈ [111]

RD ≈ [112]

TD ≈ [110]

(a)

101001

111ND

A

O

ND

RD

200𝜇m

(b)

111

ND

TD RD

010

100

001
121

110

011

211

101

11 2

(c)

Figure 4:Cold rolling ofCu single crystal. (a) Schematic illustration showing a shape and crystallographic orientations before cold rolling.The
region analyzed by SEM/EBSD technique after rolling is also shown in (a). (b)The inverse pole figure (IPF) map showing the crystallographic
orientation of ND on the TD plane after rolling to 15% reduction in thickness. (c)The stereographic projection showing the orientation at the
origin O after the rolling. Changes of crystal orientations along the line OA are also shown by {111} pole figures in (c).

Here we defineΔR as the difference in the crystal orientations
between those at 𝑥1 and 𝑥2 expressed by using the reference
frame at the origin. Then the relation among the three
rotation matrices is given by

R (𝑥2) = ΔRR (𝑥1) . (5)

Figures 3(a) and 3(b) are graphical representations corre-
sponding to the right- and left-hand sides of (5), respectively.
Although ΔR is an additional rotation from R(𝑥1) to R(𝑥2),
the stacking of the spherical units for the right-hand side of

(5) becomes that as shown in Figure 3(a). IfΔR is the rotation
defined by the rotated reference frame at 𝑥1, the order of the
product in the right-hand side of (5) and the stacking of the
spherical units in Figure 3(a) are changed.

Here we assume that ΔR is a small-angle rotation and the
rotation angleΔΦ of the axis/angle pair forΔR satisfy |ΔΦ| ≪1. Then, (1) for ΔR is written from (2) to (4) as

ΔR ≈ E + lnΔR. (6)
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Figure 5: The variations of the log angles (𝑤TD, 𝑤RD, 𝑤ND) along the line OA in Figure 4(b) as a function of the distance from the origin O.
The log angles show the orientation changes from the orientation at the origin O. (a), (b), and (c) are for the components of 𝑤TD, 𝑤RD, and𝑤ND, respectively.

The log angles (Δ𝑤1, Δ𝑤2, Δ𝑤3) of ΔR written as

lnΔR = ( 0 −Δ𝑤3 Δ𝑤2Δ𝑤3 0 −Δ𝑤1−Δ𝑤2 Δ𝑤1 0 ) (7)

satisfy |Δ𝑤1|, |Δ𝑤2|, |Δ𝑤3| ≪ 1 since |ΔΦ| ≪ 1. Using this
equation, (5) is rewritten as

R (𝑥2) ≈ ( 1 −Δ𝑤3 Δ𝑤2Δ𝑤3 1 −Δ𝑤1−Δ𝑤2 Δ𝑤1 1 )R (𝑥1) ≈ (1 0 00 1 −Δ𝑤10 Δ𝑤1 1 )( 1 0 Δ𝑤20 1 0−Δ𝑤2 0 1 )( 1 −Δ𝑤3 0Δ𝑤3 1 00 0 1)R (𝑥1) . (8)

Equation (8) shows that the infinitesimal log angles (Δ𝑤1,Δ𝑤2, Δ𝑤3) of ΔR can be interpreted as the components of
rotation angles giving the difference in the crystal orienta-
tions between R(𝑥1) at 𝑥1 and R(𝑥2) at 𝑥2.
2.3. Position Dependence of Change in Crystal Orientation.
Here we assume that the difference Δ𝑥 in 𝑥1 and 𝑥2 is small.

When R(𝑥) is differentiable with respect to 𝑥, the difference
between R(𝑥1) at 𝑥1 and R(𝑥2) at 𝑥2 is written as[R (𝑥2) − R (𝑥1)] = [R (𝑥 + Δ𝑥) − R (𝑥)]≈ 𝑑R (𝑥)𝑑𝑥 Δ𝑥. (9)
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Figure 6: The relations among Δ𝑤TD, Δ𝑤RD, and Δ𝑤ND at the same locations on the line OA in Figure 4(b), where Δ𝑤TD, Δ𝑤RD, and Δ𝑤ND
are the changes in the log angles between neighboring two measuring points. See text for an inclined broken line in (c).

From this equation and (5) to (7), we have

(
(

0 −Δ𝑤3Δ𝑥 Δ𝑤2Δ𝑥Δ𝑤3Δ𝑥 0 −Δ𝑤1Δ𝑥−Δ𝑤2Δ𝑥 Δ𝑤1Δ𝑥 0 )
)

≈ [𝑑R𝑑𝑥 ]R−1. (10)

As shown by this equation, the changes in the rotationmatrix
R(𝑥) as a function of the position 𝑥 are given by the changes
in the log angles Δ𝑤1, Δ𝑤2, and Δ𝑤3.

If all R(𝑥) for any 𝑥 are small-angle rotations, products of
matrices relating to R(𝑥) become commutative and lnΔR is
written from (5) as

lnΔR = ln [R (𝑥1)−1 R (𝑥2)] ≈ lnR (𝑥2) − lnR (𝑥1) . (11)

Then, a differential form for the small-angle rotations is given
by 𝑑 lnR𝑑𝑥 ≈ [𝑑R𝑑𝑥 ]R−1 ≈ R−1 [𝑑R𝑑𝑥 ] . (12)

3. Changes in Crystal Orientations of
Cold-Rolled Cu Single Crystal

3.1. Cold Rolling of Cu Single Crystal and Crystal Orientations
after Cold Rolling. As an example of applications of the
present analysis, we consider changes in crystal orientations
of a Cu single crystal caused by plastic deformation. A plate-
like Cu single crystal (99.9% mass purity) with a 2mm
thickness and 20mm width and length was cold rolled.
Figure 4(a) shows a schematic of the Cu single crystal before
cold rolling. Directions TD, RD, and ND shown in this
figure are the transverse, rolling, and normal directions of
the applied rolling, respectively. TD, RD, and ND construct
an orthogonal coordinate system and their crystallographic
directions are also indicated in Figure 4(a).

We observed how themicrostructure evolved after rolling
to 15% reduction in thickness by SEM/EBSD technique.
A JSM-7001F (JEOL) controlled by a program, OIM Data
Collection ver. 7.01 (TSL), was used. The acceleration voltage
and step size were 15 kV and 1.0 𝜇m, respectively. The cross-
section normal to the TD (TD plane) was observed as shown
by the rectangular region in Figure 4(a). Figure 4(b) is the
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Figure 7: Schematic illustrations showing dislocation structures in the rolled single crystal. See text for the details.

inverse pole figure (IPF) map showing the crystallographic
orientation of ND on the TD plane of the rolled specimen.
The color code for the IPFmap is shown in a standard triangle
at the top-right. The directions of RD and ND on the TD
plane are also indicated.

As shown in Figure 4(b), almost parallel blue and green
bands showing orientation splitting appeared after the rolling.
Inclination of the bands is from 0.56 to 0.65 rad (32 to 37 deg.)
to RD.We discuss orientation changes along the line from the
origin O to A shown in this IPF map. Orientation measure-
ments along the line were made at intervals of 2.4 𝜇m. The
stereographic projection in Figure 4(c) shows the orientation
at the origin O. Changes of crystal orientations along the line
OA are shown by {111} pole figures in Figure 4(c).These show
that the orientation changes caused by the rolling are mainly
rotations around TD.

3.2. Changes in Log Angles. Figure 5 shows the variations
of the log angles (𝑤TD, 𝑤RD, 𝑤ND) along the line OA as a
function of the distance from the origin O. The log angles
show the orientation changes from the orientation at the
origin O. These show that the changes in 𝑤TD are about±0.14 rad and the largest among the three components. The
periodic changes in 𝑤TD show that the interfaces between
the blue and green bands in Figure 4(b) are small-angle
tilt boundaries causing clockwise and anticlockwise rotations
around TD. Parallel directions of the traces of interfaces
shown in Figure 4(b) are almost parallel to a red broken
line from the center of the projection to 111 in Figure 4(c).
This red broken line is perpendicular to the dotted line
showing directions perpendicular to [111] in the same figure.

These show that the small-angle tilt boundaries are composed
of arrays of edge dislocations on parallel (111) slip planes
as indicated by dislocation marks at the middle-right of
Figure 4(b). Considering the initial orientation of the Cu
single crystal shown in Figure 4(a), we can say that this (111)
is the slip plane operated during the rolling [12].

Figures 6(a)–6(c) show the relations amongΔ𝑤TD,Δ𝑤RD,
andΔ𝑤ND at the same locations on the lineOA in Figure 4(b),
where Δ𝑤TD, Δ𝑤RD, and Δ𝑤ND are the changes in the log
angles between neighboring two measuring points 2.4𝜇m
apart. In the Δ𝑤TD − Δ𝑤RD and Δ𝑤TD − Δ𝑤ND relations
shown in Figures 6(a) and 6(b), the dispersion of data seems
to be symmetric and random. However, in the Δ𝑤ND −Δ𝑤RD relation shown in Figure 6(c), the data disperses
systematically near an inclined broken line in this figure. The
slope of the inclined broken line is discussed later.

Figure 7(a) schematically shows the small-angle tilt
boundaries observed on the TDplane. Possible slip directions[01 1] and [101] on (111) are also indicated in Figure 7(a).
During rolling, macroscopic shear direction on (111)may be[11 2] since this causes the plane-strain plastic deformation
on the ND-RD plane. Such deformation is achieved by
the double slip of [01 1] and [101] on (111). When shear
deformation on (111) to [11 2] occurs, crystal rotations
around TD [110] occur as shown in Figure 7(b). However,
as shown in Figure 7(c), this deformation is the combination
of the two shears (111) [01 1] and (111) [101] which cause
crystal rotations around [211] and [121], respectively.

The axis (ℎ, 𝑘, 𝑙) of rotation is related to the components
of the log angles as shown by (1).The rotation between neigh-
boring two measuring points along the line OA is caused by
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of the log angles are proportional to the components of the
rotation axis. The rotation axis may change between [211]
and [121] on (111) depending on the ratio of numbers of
the [01 1] and [101] dislocations. Hence, the change in the
rotation axes is expressed by the Δ𝑤ND − Δ𝑤RD relation as
shown by the broken line in Figure 6(c). We have considered
the changes in crystal orientations in the rolled Cu single
crystal with the changes in the log angles. The systematic
dispersion of the Δ𝑤ND −Δ𝑤RD relation shown in Figure 6(c)
is thus explained by the dislocation structures shown in
Figure 7(c).

4. Conclusions

The logarithm lnR of rotation matrix R is a skew symmetric
tensor consisting of three independent elements of real
numbers.The log angles are the elements of lnR and the set of
three parameters ofR. We have shown that the concept of the
log angles is useful to discuss changes in crystal orientations.
The changes in crystal orientations as a function of the
position are given by the changes in the log angles. As an
example, orientation changes caused by arrays of dislocations
in a cold-rolled Cu single crystal are discussed.
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